Задача 11
Найти максимум функции
f = x12 + x22 + 2x32 - 4x1 + 3x3
при ограничениях
x1 < 1
-x1 < 1
x2 < 1
-x2 < 1

Если функцию представить в матричном виде f(X) = (X,QX) + (L,X), то
Q =   1   0   0
  0   1   0
  0   0   2

L =   -4  
x1
  0
x2
  3
x3



Результат

Функция не ограничена, например, на луче M0 + Vt, t > 0:
  f = at2 + bt + c
  a = 2
  b = 1
  c = -1
    M0   V
x1
  0   0
x2
  0   0
x3
  -1   -1

Выполнение ограничений:
Ak - вектор коэффициентов левой части k-го ограничения, Bk - правая часть k-го ограничения.
  (Ak , M0)     Bk   (Ak ,V)
  0
<
  1   0
  0
<
  1   0
  0
<
  1   0
  0
<
  1   0

к таблице результатов