Task 9
Find minimum of the function
f = 0,7x12 + 0,3x22 + 0,2x1x2 - x1 - 0,4x2
subject to
x1 + x2 < 1

If the function is given in matrix form f(X) = (X,QX) + (L,X), then
Q =   0,7   0,1   0
  0,1   0,3   0
  0   0   0

L =   -1  
x1
  -0,4
x2
  0
x3



Outcome

fmin = f(X0) = -0,4125

    X0   grad f   sum CkAk
x1
  0,625   -0,05   -0,05
x2
  0,375   -0,05   -0,05
x3
  0   0   0
Ck - Lagrange multipliers at the Kuhn-Tucker,
Ak - vector coefficients of left side of constraints number "k",

Execution constraints and Lagrange multipliers
  AkX0     B     Ck
  1
<
  1
-
  -0,05
Yellow highlighted lines that match the active inequalities at X.

variable x3 can be any value

to table of results