Task 4
Find minimum of the function
f = -31x32 + 45x52 - 1286x1x2 + 5923x2x4 - 8x1 + 125x5
subject to
-22x1 + 16x2 + 431x4 < -6721
405x1 - 339x3 + 91x5 < 2
42x1 + 82x2 + 50x3 - 10x4 < 11109
-5x1 + x2 - x3 + 23x4 - 1073x5 < 8413
84,1x3 + 402,31x4 + 9x5 < 310
-421x1 - 8032x2 - 3x4 + 476x5 < -91
31x3 + 17x4 - 6782x5 < -32

If the function is given in matrix form f(X) = (X,QX) + (L,X), then
Q =   0   -643   0   0   0
  -643   0   0   2961,5   0
  0   0   -31   0   0
  0   2961,5   0   0   0
  0   0   0   0   45

L =   -8  
x1
  0
x2
  0
x3
  0
x4
  125
x5



Outcome

Function is unbounded, for example, on the ray M0 + Vt, t > 0:
  f = at2 + bt + c
  a = -2245,12573228497
  b = -11763757,5071301
  c = -5769948196,18483
    M0   V
x1
  -542,796108910294   -0,860287295428895
x2
  547,724118051503   1
x3
  -643,466752558771   -1,02941695975028
x4
  -1892,45579672591   -0,560291439552751
x5
  -3,84085810185094   -0,00610983194111699

Execution constraints:
Ak - vector coefficients of left side of constraints number "k", Bk - right side of constraints number "k".
  (Ak , M0)     Bk   (Ak ,V)
  -794943,348104018
<
  -6721   -206,5592899478
  -2046,71307851427
<
  2   -1,70046268732627E-14
  8867,16144531152
<
  11109   5,10702591327572E-15
  -35500,0711662482
<
  8413   -5,28223298434938E-16
  -815504,013193912
<
  310   -312,039803848936
  -4166953,83540474
<
  -91   -7671,04645430975
  -26070,5182269093
<
  -32   3,52495810318487E-15
Yellow highlighted lines, that match planes of constraints polyhedron, that are parallel to the ray. In the last column of this row's the number is not zero only due to computational error.
to table of results