Task 3
Find minimum of the function
f =
x_{1}^{2}
+ 2x_{1}x_{2}
 6x_{2}x_{3}
 13x_{1}
subject to
5x_{2} + 11x_{3} < 117
19x_{2}  x_{3} < 7
If the function is given in matrix form f(X) = (X,QX) + (L,X), then
L = 
13 

x_{1} 
0 
x_{2} 
0 
x_{3} 
Outcome
f_{min} = f(X_{0}) = 416,031100478469

X_{0} 
grad f 
sum C_{k}A_{k} 
x_{1} 
8,21052631578947 
0 
0 
x_{2} 
14,7105263157895 
40,1196172248804 
40,1196172248804 
x_{3} 
3,94976076555024 
88,2631578947368 
88,2631578947368 
C_{k}  Lagrange multipliers at the KuhnTucker,
A_{k}  vector coefficients of left side of constraints number "k",
Execution constraints and Lagrange multipliers
A_{k}X_{0} 

B 

C_{k} 
117 
< 
117 
 
8,02392344497608 
283,44976076555 
< 
7 

0 
Yellow highlighted lines that match the active inequalities at X.
to table of results