Task 3
Find minimum of the function
f = x12 + 2x1x2 - 6x2x3 - 13x1
subject to
5x2 + 11x3 < 117
-19x2 - x3 < -7

If the function is given in matrix form f(X) = (X,QX) + (L,X), then
Q =   1   1   0
  1   0   -3
  0   -3   0

L =   -13  
x1
  0
x2
  0
x3



Outcome

fmin = f(X0) = -416,031100478469

    X0   grad f   sum CkAk
x1
  -8,21052631578947   0   0
x2
  14,7105263157895   -40,1196172248804   -40,1196172248804
x3
  3,94976076555024   -88,2631578947368   -88,2631578947368
Ck - Lagrange multipliers at the Kuhn-Tucker,
Ak - vector coefficients of left side of constraints number "k",

Execution constraints and Lagrange multipliers
  AkX0     B     Ck
  117
<
  117
-
  -8,02392344497608
  -283,44976076555
<
  -7     0
Yellow highlighted lines that match the active inequalities at X.

to table of results