Task 15
Find maximum of the function
f = x1 + 8x2 - x3 - 2x4
subject to
2x1 - x2 < 12
2x1 + 3x2 < 20

If the function is given in matrix form f(X) = (X,QX) + (L,X), then
Q =   0   0   0   0
  0   0   0   0
  0   0   0   0
  0   0   0   0

L =   1  
x1
  8
x2
  -1
x3
  -2
x4



Outcome

Function is unbounded, for example, on the ray M0 + Vt, t > 0:
  f = at2 + bt + c
  a = 0
  b = 4,33333333333333
  c = 21,9515722899109
    M0   V
x1
  4,48986119155928   -1
x2
  2,18271388729396   0,666666666666667
x3
  0   0
x4
  0   0

Execution constraints:
Ak - vector coefficients of left side of constraints number "k", Bk - right side of constraints number "k".
  (Ak , M0)     Bk   (Ak ,V)
  6,7970084958246
<
  12   -2,66666666666667
  15,5278640450004
<
  20   -1,11022302462516E-16
Yellow highlighted lines, that match planes of constraints polyhedron, that are parallel to the ray. In the last column of this row's the number is not zero only due to computational error.
to table of results