Task 14
Find maximum of the function
f = x12 + 3x22 + 2x1x2 + 6x1 + 3x2
subject to
-2x1 - 2x2 < 1
-2x1 - 3x2 < 4

If the function is given in matrix form f(X) = (X,QX) + (L,X), then
Q =   1   1
  1   3

L =   6  
x1
  3
x2



Outcome

Function is unbounded, for example, on the ray M0 + Vt, t > 0:
  f = at2 + bt + c
  a = 2
  b = 9,69337524528154
  c = 9,72382087662576
    M0   V
x1
  -3,32665618867962   -1
x2
  3,17334381132038   1

Execution constraints:
Ak - vector coefficients of left side of constraints number "k", Bk - right side of constraints number "k".
  (Ak , M0)     Bk   (Ak ,V)
  0,306624754718463
<
  1   0
  -2,86671905660192
<
  4   -1

to table of results